A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment

نویسندگان

  • R. B. A. Koelemeijer
  • P. Stammes
چکیده

The Global Ozone Monitoring Experiment (GOME) on board the ERS-2 isdesigned to measure trace gas column densities in the Earth's atmosphere. Such retrievals are hindered by the presence of clouds. The most important cloud parameters that are needed to correct trace gas column density retrievals for the disturbing effects of clouds are the (effective) cloud fraction and cloud top pressure. At present, in the operational GOME data processor an effective cloud fraction is derived for each pixel, but cloud top pressure is assumed a priori and is deduced from a climatological database. Here we report an improved cloud retrieval scheme, which simultaneously retrieves the effective cloud fraction and cloud top pressure from GOME data. This algorithm, called Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO), makes use of refiectivities as measured by GOME inside and outside the oxygen A band (758-778 nm). For validation, the results of FRESCO are compared to effective cloud fractions and cloud top pressures derived with standard methods from colocated measurements made by the Along Track Scanning Radiometer-2 (ATSR-2). The brightness temperatures of the cloudy pixels as measured by ATSR-2 are related to cloud top pressures using temperature profiles from the European Center for Medium-range Weather Forecasts model. Generally, the results from FRESCO and ATSR-2 agree reasonably well. For the effective cloud fractions the average difference (based on a comparison of 322 points) is 0.04; the standard deviation is 0.09. For the cloud top pressures, only points with an effective cloud fraction larger than 0.1 have been compared. For these 236 points the average difference in cloud top pressure is 65 hPa, and the standard deviation is 92 hPa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The semianalytical cloud retrieval algorithm for SCIAMACHY I. The validation

A recently developed cloud retrieval algorithm for the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is briefly presented and validated using independent and well tested cloud retrieval techniques based on the look-up-table approach for MODeration resolutIon Spectrometer (MODIS) data. The results of the cloud top height retrievals using measurements in the ox...

متن کامل

Improving cloud information over deserts from SCIAMACHY Oxygen A-band measurements

The retrieval of column densities and concentration profiles of atmospheric trace gas species from satellites is sensitive to light scattered by clouds. The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument on the Envisat satellite, principally designed to retrieve trace gases in the atmosphere, is also capable of detecting clouds. FRESCO (Fast Retriev...

متن کامل

SP-572 - 2004 Envisat & ERS Symposium

An algorithm for the retrieval of the aerosol optical thickness over land and over water from SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY) is presented. Because calibrated data are not yet available for the SCIAMACHY channels used by the algorithm, the concepts were tested with GOME (Global Ozone Monitoring Experiment) data. The cloud fraction in the GOME pi...

متن کامل

Comparison of Operational Cloud Properties Derived from Gome/ers-2 and Msg/seviri Data

We focus on the retrieval of cloud properties appropriate for trace gas retrieval from sun-normalized UV/VIS backscatter spectra obtained from the Global Ozone Monitoring Experiment (GOME) on-board ERS-2. A data fusion technique is applied to calculate the fractional cloud cover of GOME footprints from GOME’s Polarization Measurement Devices (PMDs). Furthermore, cloudtop albedo and cloud-top he...

متن کامل

A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback) is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007